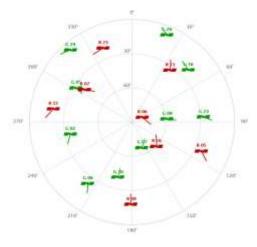
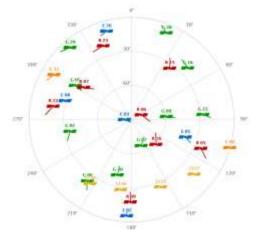


#### **GNSMART 2.0**

ready for the next decade(s) of GNSS


Jannes B. Wübbena, Gerhard Wübbena

Geo++® GmbH 30827 Garbsen, Germany www.geopp.de




## The evolution of GNSS





18 satellites



29 satellites

Non GPS/GLONASS satellites can contribute significantly to accurate GNSS services!

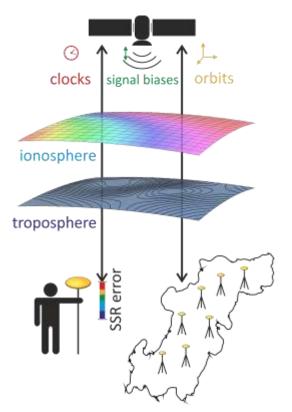
## New signals – blessing and burden



The following observation types are defined in RINEX Version 2:

L1, L2: Phase measurements on L1 and L2 C1 : Pseudorange using C/A-Code on L1 P1, P2: Pseudorange using P-Code on L1, L2 D1, D2: Doppler frequency on L1 and L2

#### 7 Observables

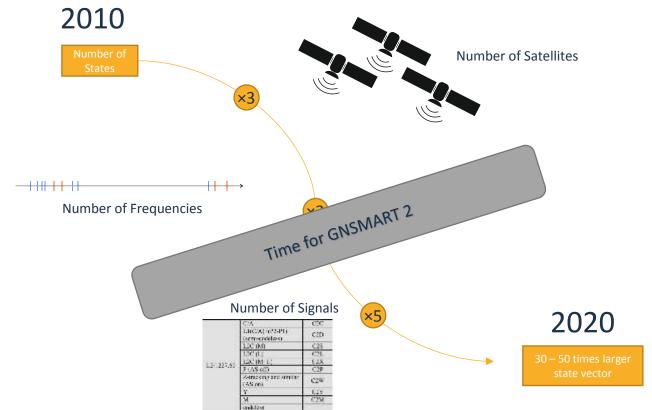

| GNSS<br>System | Freq. Band<br>/Frequency | Channel or Code                    | Observation Codes |                  |         |                    |
|----------------|--------------------------|------------------------------------|-------------------|------------------|---------|--------------------|
|                |                          |                                    | Pseudo<br>Range   | Carrier<br>Phase | Doppler | Signal<br>Strength |
| GPS            | L1/1575.42               | C/A                                | CIC               | LIC              | DIC     | SIC                |
|                |                          | LIC(D)                             | CIS               | L1S              | DIS     | SIS                |
|                |                          | LIC (P)                            | CIL               | LIL              | D1L     | SIL                |
|                |                          | LIC (D+P)                          | CIX               | LIX              | DIX     | SIX                |
|                |                          | P (AS off)                         | CIP               | LIP              | DIP     | SIP                |
|                |                          | Z-tracking and similar<br>(AS on)  | CIW               | LIW              | DIW     | SIW                |
|                |                          | Y                                  | CIY               | LIY              | DIY     | SIY                |
|                |                          | M                                  | CIM               | LIM              | DIM     | SIM                |
|                |                          | codeless                           |                   | LIN              | DIN     | SIN                |
|                | L2/1227.60               | C/A                                | C2C               | L2C              | D2C     | S2C                |
|                |                          | L1(C/A)+(P2-P1)<br>(semi-codeless) | C2D               | L2D              | D2D     | S2D                |
|                |                          | L2C (M)                            | C2S               | L2S              | D2S     | S2S                |
|                |                          | L2C (L)                            | C2L               | 1.21.            | D2L     | S2L                |
|                |                          | L2C (M+L)                          | C2X               | L2X              | D2X     | S2X                |
|                |                          | P (AS off)                         | C2P               | L2P              | D2P     | S2P                |
|                |                          | Z-tracking and similar<br>(AS on)  | C2W               | L2W              | D2W     | S2W                |
|                |                          | Y                                  | C2Y               | L2Y              | D2Y     | S2Y                |
|                |                          | M                                  | C2M               | L2M              | D2M     | S2M                |
|                |                          | codeless                           |                   | L2N              | D2N     | S2N                |
|                | L5/1176.45               | t.                                 | C51               | L51              | D51     | S51                |
|                |                          | Q                                  | C5Q               | L5Q              | D5Q     | S5Q                |
|                |                          | I+Q                                | C5X               | L5X              | D5X     | S5X                |

90 Observables



## The GNSMART State Space Model

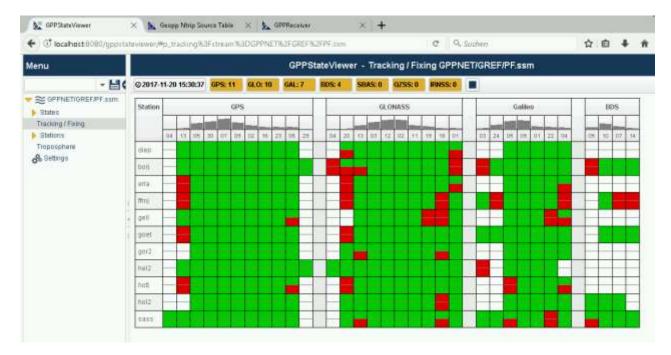





Simultaneous estimation of all relevant state parameters in a stasticially rigorous approach

- satellite clocks
- satellite orbits
- satellite signal biases
- ionospheric delay/advance
- tropospheric delay
- reference station clocks
- reference station signal biases
- reference station coordinates
- ٠.

## The challenge






### GNSMART 2 Features Supported GNSS



#### Supporting GPS, GLONASS, BDS, GALILEO, QZSS, SBAS, IRNSS



### GNSMART 2 Features Supported Signals



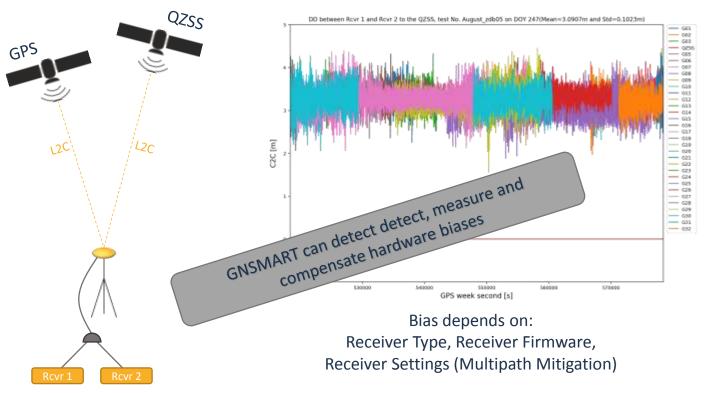


GNSMART 2 supports all available signals

#### GNSMART 2 Features Hardware Independence



GNSMART Philosophy: Any Reference Station, Any Rover


More than 20 proprietary receiver interfaces supported, including Javad, Septentrio, Leica, Topcon, Trimble, Novatel, Hemisphere, u-blox, NVS, Sokkia, Garmin, Android, ...

Additionally, standardized interfaces such as: Binex, Rinex, RTCM, ...

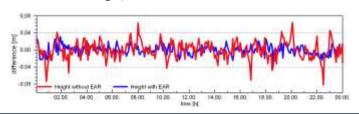
Supporting any receiver means supporting every bias

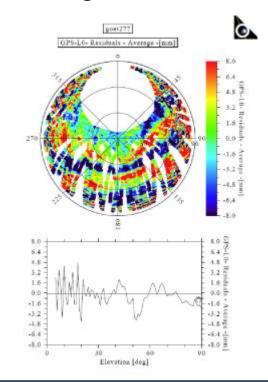
### GNSMART 2 Features Hardware Independence





#### GNSMART 2 Features – On the Job station calibration

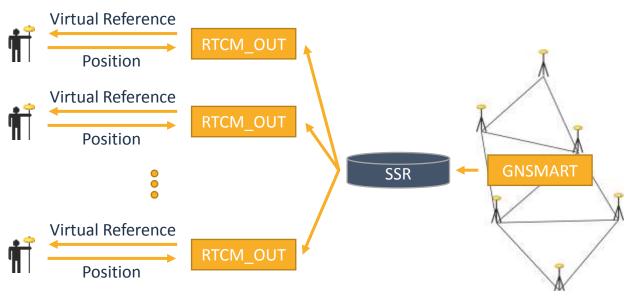




4th EUPOS Technical Meeting

#### Near field multipath needs to be corrected for highest accuracies



BKG station Göttingen, Foto: BKG






### GNSMART 2 Features SSR Output



#### Typical way of network RTK data dissemination



Individual VRS computation for every rover

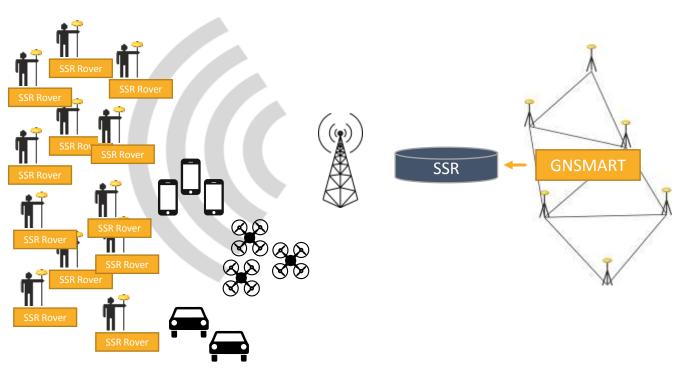


## GNSMART 2 Features SSR Output



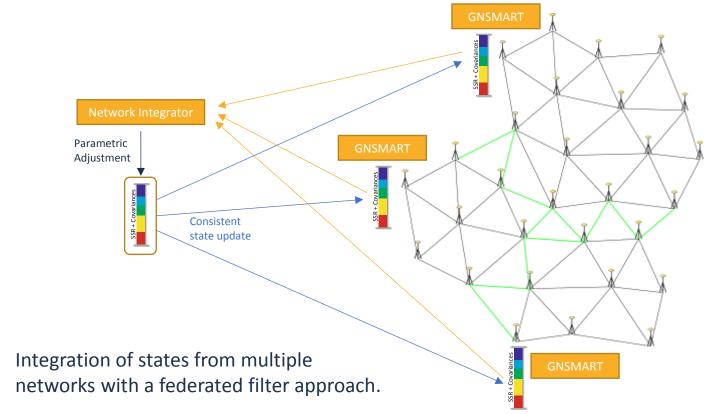
#### Outputting SSR allows for efficient scaling of user amount




SSR is intrinsically broadcast compatible



## GNSMART 2 Features SSR Output




#### Outputting SSR allows for efficient scaling of user amount



## GNSMART 2 Features Integrating Networks







## GNSMART 2 Features Cascading Networks



Example: The L6 CLAS signal of QZSS

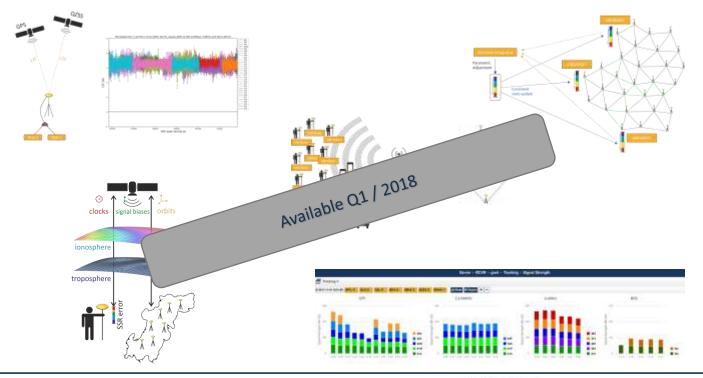
- 300 Reference Stations
- 12 Sub-Networks
- 12 GNSMART
- 12 different SSR datasets every 5s

Network Integration

One consistent SSR data set for Japan (1700 bit/second)



# GNSMART 2 Features Cascading Networks






### **GNSMART 2**



#### The rigorous, powerful and scalable solution for high accuracy GNSS

